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The problem of the flow generated in a viscous fluid by the impulsive motion 
of a wavy wall is treated as a perturbation about the known solution for a straight 
wall. It is shown that, while a unified treatment for high and low Reynolds 
numbers is possible in principle, the two limiting cases have to be treated 
separately in order to get results in closed form. It is also shown that a straight- 
forward perturbation expansion in Reynolds number is not possible because the 
known solution is of exponential order in that parameter. At low Reynolds 
numbers the waviness of the wall quickly ceases to be of importance as the liquid 
is dragged along by the wall. At high Reynolds numbers on the other hand, the 
effects of viscosity are shown to be confined to a narrow layer close to the wall 
and the known potential sohtion emerges in time. The latter solution is a good 
illustration of the interaction between a viscous fluid field and its related inviscid 
field. 

1. Introduction 
The problem studied in this paper brings together two well-known examples 

used to illustrate the nature of fluid motion. The field generated by a flat plate 
impulsively moved in a viscous fluid is often used to demonstrate the generation 
of vorticity in a fluid by solid surfaces in motion relative to it. This problem, 
commonly (but apparently mistakenly) known as the Rayleigh problem, 
naturally leads to the study of viscous boundary layers. The wavy-wall problem, 
on the other hand, is a standard example in inviscid fluid dynamics used to 
illustrate the effect of boundary perturbations on the uniform motion of an 
inviscid fluid. The latter problem leads naturally to thin-aerofoil theory. In  this 
paper we study the fluid motion generated by the impulsive motion of a wavy 
wall in a viscous incompressible fluid. 

The problemis worthy of interest for anumber of reasons. Problems in unsteady 
fluid dynamics such as this one show the development in time of a viscous field; 
they may therefore shed some light on the generation of turbulence. Second, 
the problem shows the interaction of a viscous field with an inviscid field. The 
results show the development in time of the inviscid far field in the high Reynolds 
number limit, i.e. the inviscid field and boundary layer emerge naturally from 
the analysis. Lastly, the analysis brings out clearly the care required in handling 
perturbation expansions in which terms of exponential order arise. The problem 
is formulated in 0 2, the low Reynolds number limit is studied in 9 3, the high 
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FIGURE 1. The wavy-wall problem. Incompressible fluid fills the region above the wall, 
which is described for t* < 0 by y* = E* sin (27nz*/A). At t* = 0 the wall is impulsively 
moved to the right with a velocity U .  

Reynolds number limit in 5 4, and in 8 5 the solutions are discussed to bring out 
the special features of this problem. 

2. Formulation 

a wavy wall defined (see figure 1 )  for t* < 0 by 
Consider incompressible fluid in a semi-infinite region bounded on one side by 

y* = €*sin (27~x*/h). (1) 

At time t* = 0 the wall is impulsively given a velocity U in the x* direction. In  
this two-dimensional situation the equations governing the motion of the 
incompressible fluid are 

u$* + v;. = 0) 

u; + u*u$ + v*u;* = p--lp$* + YVZU*, 
v;* + u*v:. + v*v$ = p-1p;. + VVZV*, 

(2a )  

(2b) 

(2c) 

where the symbols are defined in the usual way, the starred quantities are 
dimensional and the subscripts denote differentiation with respect to the 
subscript. The initial and boundary conditions are 

u*(z*, y*, t* )  = v(x*, y*, t*) = 0 for t* < 0, (3a)  

y* = E* sin {27rrh-1(x* - Ut*)} for t* 2 0, (3b)  

u*,v*+O as y*-+m. (3c) 

(4) 

Iu*(x*, y*, t* )  = U ,  v*(x*, y*, t*) = 0 on 

We now define 

I x = 2nx*/h, u = u*/U, E = e*/27~h, etc., 
t = 2j?-Ut*/h, p = p*/pU2, R = U h / 2 7 ~ ~ .  
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In terms of these dimensionless variables and parameters the equations and 
boundary conditions for t 2 0 take the form 

u,+v, = 0, (5a)  

~t + UU, + VU, = -pz + R-lV2u, 

vt + UV, + VV, = -pY + R-lV2v, 

u (x , y , t )  = 1, v(x,y, t)  = 0 on y =  esin(x-t), 

u(x, y ,  t ) ,  v(x, y ,  t)+O for y+co. ( 6 b )  

It proves convenient to use a non-orthogonal co-ordinate system in which one 
of the co-ordinates takes a constant value on the wall. We define (fort 2 0 )  

5 = x, 7 = y-esin(x-t), 7 = t ,  (7a-c) 

u , - E C O S ( ~ - 7 ) U g + v ,  = 0, (8a)  

so that the wall is defined by 7 = 0. In  terms of these co-ordinates (5a-c) become 

u, + 6 cos (5 -7)  u, + u{ug- 8 cos (6 -7) u,} + vu, 

v, + E cos (5 -7) v, + U(V6 - E cos (6 -7) v,} + VZ', 

= - (pg - 6 cos (5 -7)pT} + R-'{ugg - 2~ cos (6  -7) U S ,  
+ e sin (5-7) u7 + e2 cos2 (5-7) uVT + u,?}, (8  b )  

= -p ,  + R-l{vg6 - 2s cos (6  -7) vg, + e sin (5-7) vll 
+ €2 cos2 (5 -7) v,, + Vtl}.  (8 c) 

a, 777) = 1, @, 727) = 0 on 7 = 0, (9a)  

u,v+O as q+m. (9b) 

The boundary conditions for 7 2 0 are 

Equations (8) are nonlinear and not amenable to solution as they stand. 
However, if the waviness of the wall is small it is natural to seek a perturbation 
solution for smaIl e. The limit e = 0 is, of course, the limit of a flat plate, for 
which the solution is well known. We therefore seek a perturbation solution 
about this unsteady solution. We assume expansions of the form 

u = u(O)(y,7) + eu(1)(5, 7,7) + 0 ( € 2 ) ,  (10a)  

V =  ev(%, 737) + 0(s2), ( l o b )  

P = Po + EP(% 777) + O(E2). (10c) 

When these expansions are substituted into equations (8) and boundary con- 
ditions (9), equations to each order in e may be obtained. 

Equations to order 1 
Po, (11)  

u(O)(O,7) = 1 for 7 2 0. (12) 

(13) 

~ ( 0 )  = R-luW) ~ ( 0 )  = 0, pC0) = 
7,' 

The solution is the well-known Rayleigh solution: 

u(O)(7,7) = 1 - erf (Rt7/273) = erfc (R*7/27t). 
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Equations to order E .  Eliminating the pressure by cross-differentiation, the 
equations for the velocity components are 

up+ vy) = cos (6 -7) uy, (14a) 

The boundary conditions are 

~ ( 1 )  = ~(1) = 0 on 7 = 0, (15a) 

dl), v(1)+ 0 as 7 -t 00. (15b) 

Now (14a) and (14b)  together with the boundary conditions (15a) and ( 1 5 b )  
fully specify the problem for a wavy wall whose 'roughness' is small. This 
formulation is valid for all Reynolds numbers. Two facts are however immediately 
apparent. Since d0)(7,7)  is a function of the co-ordinates 7 and 7, equations (14) 
are a set of partial differential equations with non-constant coefficients. Thus 
even these linear equations are not easily amenable to solution. Second, it is now 
clear why the 5, 7, 7 co-ordinate system is preferable to the x, y, t system. If the 
latter system is used the equations are simpler but the boundary conditions will 
lead to a formulation which will not be uniformly valid for small times. 

In  the next two sections we solve (14) in the low and high Reynolds number 
limits. The strategy is to solve the equations by reducing them to systems of 
equations with constant coefficients; only the leading terms in the Reynolds 
number expansions will be sought. The leading terms in these two limiting cases 
contain the gist of the physics of the problem. 

3. Solution for small Reynolds number 
When the fluid is very viscous we expect the Rayleigh limit to dominate the 

motion, i.e. that the fluid is dragged along by the plate, the vorticity being 
quickly diffused into the fluid. To a first approximation do) can be treated as 
uniform. Formally for R-t 0 we can write 

and seek a solution for u(l), dl) and p(l) of the form 
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where d:), etc., are the leading terms in an expansion for R+O and successive 
terms u$), etc., are the next terms in the expansion. Certain observations need 
to be made a t  this stage. The expansion in Reynolds number is actually contained 
in an expansion in the roughness parameter B. Thus if higher-order terms were 
required d2), u(3), etc., would be expanded in a similar fashion. Next, the expansion 
is not uniformly valid as it is clear that if 7/71 & R-4 the second term in (16) is 
larger than the first term. Thus the expansion is valid for a layer initially close 
to the wall whose thickness increases like T*. The results show however that an 
outer expansion is not really necessary (to first order) as the perturbations decay 
at the wall and at infinity. Since we are mainly interested in the motion close to 
the wall the present inner expansion is sufficient. Third, we note that u(O)(q,~) is 
of exponential order in the Reynolds number; consequently derivatives of 
d0)(7,7) and U(~)(T,I,T) contribute to different orders in a formal perturbation 
expansion. It is therefore best not to speculate in advance about the ordering 
in Reynolds number; it is in keeping with this strategy that (17) do not indicate 
the ordering in Reynolds number. The procedure followed is simply to keep all 
leading terms in do) and actually calculate the leading terms in (17). Thus we 
determine the ordering. Finally, only the leading terms u(:)([, q,~), etc., will be 
calculated in this paper as they contain the kernel of the problem. In  what 
follows we drop the subscript 1 on the understanding that u(l)((, q , ~ ) ,  etc., really 
stand for u(:)(E, q , ~ ) ,  etc. 

We take the forms indicated in (16) and (17) and substitute them into the 
governing equations (14) and boundary conditions (15). Retaining the leading 
terms we obtain 

RPq exp ( - R ~ ~ / 4 7 )  
2 ( w 3 ) t  

= -sin (5-7) +O(R2exp ( -  Ry2/47)), (18b) 

d1)(5,0,7) = d1)(5, 0 , ~ )  = 0, ( 1 9 4  

4 1 ,  v(l)+ 0 as q-tco. (19b) 

For this linear initial-value problem the Laplace transform method is appro- 
priate. We define the transform and its inverse as 

Equations (18) transform to 
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a } - ~ {Ti + E f i  - R&jW - R@) - {,(I) + $1) - Rp$l) - R@) a 
a7 55 vv 5 )  

= &R[- exp{-[R(cr-i)]*y-it}+ exp{- [R(cr+i)]*q+it}]. ( 2 1 b )  

The solutions to the homogeneous part of the above equations which decay as 
7 -+ 00 may be written as 

= A exp { - 7 +it} +Bexp { - 7 -it} 
+ Cexp { - [l + R ( u  - i)]* 7 +it} + D exp { - [l + R(cr + i)]3 7 -it}, (22a) 

,-[a H - - iA exp { -7 +it} -iBexp { -7 -it} 
iD 

[ 1 + R(cr +i)]4 
exp(- [l + R(cr-i)]*v +it} - iC 

[ l + R ( a - i ) ] f  
+ 

x exp { - [l + R(cr+i)]4 7 - iE}. ( 2 2  b )  

The coefficients A,  B, C and D are functions of u and R alone. The particular 
solutions satisfying the inhomogeneous equations to leading order in R are 

exp { - [R(c  + i)]4 7 + ig}, iR3 
2(u + i ) 4  

exp { - [ R ( v  - i ) ]& 7 - it} + iR4 ,O’ - _____ 
2(u- i)* P -  

(23a) 

69 = O(R). (23b) 

(24a, b )  

The general solutions to ( 2 1 )  are thus 

C(1) = @ + @’, ?gl) = E(1) P + $1) H .  

We now apply the boundary conditions (19) at 7 = 0; the coefficients A ,  B, C 
and D are determined to leading order to be 

A = -iR4/2(~+i)4{i-[i+R(a-i)]4} (25a) 

B = i R 4 / 2 ( ~ - i ) 4 { 1 - [ 1  + R ( ( ~ + i ) ] a } ,  ( 2 5 b )  

C = - [ l + R ( ~ - i ) ] t A ,  D = - [ i + R (  cr + i)]4 B. (25c7 4 

U(”(t7 777) = sin (E-7) [e-’f1(7) -f2(7,7) -f3(7,7)I, (26a) 

vc1)(5, 7,7) = R) cos (5-7) [e-7.f1(7) -f4(r,7)I, ( 2 6 b )  

where fl(a) = l / { c 4 [ l - ( l + R e ) * ] } ,  (27 a )  

f‘h d = {(I  +R+xp [- (1  + W ~ 7 1 } / { 4  - (1 +R441), ( 2 7 b )  

Thus for R +  0 we have 
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where the functions f l ,  . . . , f 4  are defined by 

dr) , 
1 274 1 1lR ecrT{7(2 - 2rR) + R} 
R (  n-4 T I ~  [r(l-rR)]t 

fl(7) = -- -+- 

\' 2(1-. 

The above solutions are well behaved for all (6,  q,7). Inspection of the solutions 
will vindicate the procedure used here of not specifying the forms of the expan- 
sions in advance. The dependence on the Reynolds number is quite different a t  
small and large times. The formal solutions obtained above can be differentiated 
and be easily shown to satisfy the governing equations ( 5 )  and (6) to order E 

and to leading order in R. 
In order to show more clearly the nature of the solutions we now present the 

solutions valid for small and large times respectively. These can be obtained 
directly from (28)-(30) or more easily from the transforms using the theorems 
valid for small and large times. 

Xolution for small r 

u ( t , q , ~ )  = erfc (R*q/27*} + E sin (6-7) [erfc (R+q/27*) 
- exp(-q)+0(d)]-tO(E2), (31a) 

(31 b )  v(E, q,7) = E cos (6-7) [erfc (Rbj'/273) - exp ( -  q) + 0(74)] + O(e2) .  

Solution for large T 

. .  
x [ ( l - q ) e - v -  exp(-Rq2/4r)]+h.o.t., (32a) 

v(5, y , ~ )  = - eRt cos (t-7) qe-v/(m)*+ h.0.t. (32b) 

The above solutions make clear the dangers of prescribing the ordering in 
Reynolds number in advance. The solutions can easily be seen to satisfy the 
governing equations (5) and the boundary conditions (6). These results will be 
discussed in greater detail in 3 5.  

4. The high Reynolds number limit 
When the viscosity of the fluid is small the layer of fluid dragged along by the 

wall grows only slowly in time. The fluid field feels the waviness of the wall for 
some time before it is damped out by the wall boundary layer. We therefore 
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expect the potential field which develops in the far field to be only slowly attenu- 
ated by the viscous field. 

The zeroth-order velocity field is once again expressed as an asymptotic 
expansion, now however for R+m:  

u(o)(q,r) = 1 - erf (R+7/27&) 

[ 7r*{R*7/274} (' - 1 ! { R * ~ / T * } ~  2!  +...)I exp ( - Rq2/4-7) = I -  1 -  

We now seek a solution for u(1) and dl) of the same form as (17) but with the 
expansion now for R + m. Note that the expansion for u(0)  is truly valid only for 
-7) < R*y; naturally, the expansion is valid away from the wall outside a layer 
growing with time. Thus we expect even at this stage to have to construct a 
separate inner expansion to be matched to this outer expansion. As we shall see, 
this inner expansion turns out to be a remarkably simple boundary layer. 

Once again, in what follows u(l)(t, 7,-7), etc., should be taken to mean ui1)(6, 7,7), 
etc. ; that is, the first terms in an asymptotic expansion for R-t  00. The governing 
equations (15) now simplify to 

In the above we have apparently inconsistently dropped the convection terms 
due to the normal velocity dl); while this is done for pragmatic reasons, it  can be 
easily justified on the basis of the rapid decay of u(O)(7,-7) and by inspecting the 
resulting solutions. In  the inner expansion however, these terms turn out to be 
dominant . 

As in 3 3 we Laplace transform (34 ) :  

= aR2[exp { - [(g-i) R]J7 -i6}+ exp{ - [(g+i) R]*7 +it}]. ( 3 5 b )  

The solutions to the homogeneous equations are now 

(36a) j$l) - - H - e "Ao cos f l+  B,, sin f l ]  + exp [ - (RcT)~ 71 [A,  cos 6 + B, sin fl], 

Gj$ = e - ~ [ - A o s i n ~ + B o c o s ~ ] + ( R ~ ) - ~ e x p [ -  ( R B ) * ~ ]  [A,sin~-B,cosfl], ( 3 6 b )  
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where A,, B,, A ,  and B, are functions of a and R alone. Particular integrals to the 
inhomogeneous equations are 

exp ( - [R(a - i)]* 7) - 
P -  

- Rg [q + sin t] exp ( - [R(a  + i)]* r ) ,  
2(cJ + i)* 

G‘# = 0 ( 1 ) ,  i.e. of lower order. ( 3 7 b )  

(38% b)  q ( 1 )  = q-p ,$l’ C(1) =jg+@* 
Thus the complete solution is given by 

w +  P ,  

Now some care is required to obtain the solution. While the particular integrals 
(37)  decay correctly a t  infinity, they grow as RB as r -+ 0. In  order that u(l) and 
dl) match the inner solutions these terms need to be eliminated for r -+ 0. This 
can easily be done if one notes that parts of the homogeneous solutions (36) are of 
exponential order in R; these can be used to eliminate the offending particular 
integrals for r -+ 0. We therefore split up A ,  and B, into parts of order R and 
parts of order 1 as follows: 

where 
A ,  = Ai+A’;,  B, = B;+B;, ( 3 9 )  

A ;  = - 7 (40a) 

(40b) 
R* 

) R9 
(a + i)* + (a - i)* - _  RB 

and A’; and B; are of order 1 and are to be determined by matching with the 
inner solution. The outer solution therefore takes the following form: 

.iiC1) = e-TIAo cos 5 + B, sin 51 + exp [ - (Ra)*r]  [A’; cos 6 + B; sin t] 

sin 5 + 
( 4 1 b )  

It is to be noted that in using part of the homogeneous solution to cancel 
terms of order 2/R in u(1) for + 0, we have not caused difficulties to appear in 
dl). Terms of order 2/R in us  correspond to terms of order I in vg: this is the 
direct result of having terms of exponential order in the expansion. We now 
have to find the inner solution to which the outer solution has to be matched. 
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Actually this can be done by inspection but we shall demonstrate the formal 
approach in the interests of continuity in the treatment. 

Inner solution 

Close to the wall, however high the Reynolds number, u(O)(r,~) will be order 1.  
Also, close to the wall the normal convective terms will be important. The 
natural scaling for the problem for obvious reasons is 

'71 = ~ t r ,  alav = Rtapvl. (4% b) 

(43a) 

In  terms of the inner variable the governing equations (14) take the form 

u&) + Rtv',f' = R* cos (5 -7) u$), 

+ Rv$\, - + Ru(O)v(t) = R%p(1). v (43c) 

uk? + Buy7, - Ru(? - R%vCUu(O) Ru(O)u(U 
7' - 5 

= Rp(t) + R8 cos (5 -7) u$){l -do)} - Ra sin (5 -7) u?), (43 b) 

Note that we have not used separate symbols for the inner and outer expan- 
sions. The inner solution to leading order turns out to be trivially simple: 

v(1)(5,'7',7) = cos (5-7) ( d o ) -  l),  

~ ( " ( 5 ,  r1,7) = O(R-t), 

p(I)(t,  f , ~ )  = constant + O(R-4). (44c) 

This solution satisfies (43) to leading order, and satisfies the boundary con- 
ditions a t  the wall, namely v(l)(yr = 0) = d1)(rr = 0 )  = 0. The pressure is constant 
throughout the boundary layer, which essentially acts as a source for the outer 
solution. 

Matching and the complete solution 

The inner solution determines the boundary conditions for the outer solution: 

u(1) outer ( '7 -+ 0) = U&&+co) = 0, (45a) 

(45b) 

Applying these boundary conditions to the solutions (41) we obtain the outer 
solution 

-+ 0) = wg)ner('7'-+ co) = - cos (5 -7). 
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+ 
(46b) 

Thus to order e the complete outer solution for R-t 00 is 

u(g,q,7) = erfc{R+q/2d)+e e-V{-sin(E-T) +f l (q ,7)cos~-f2(q ,~)s in~)  [ 

x (cos 5 + r sin 5) dr - cos <f3(q, 7) + f4(q, 7) sin 5) 

cO e-r7 a + a COST - b sin7 
dr,  

dr,  

a2 + b2 

* e- - b + b COST +asin7 
a2 + b2 

1 me-ff bsin [q(Rr)4] + exp ( - bqR4) {a cos(7 - aqR4) - bsin(7 - aqR4)) 
f 3 h 7 )  = -;jo 2 [ a2 + b2 ] dr, 

] dr, 

] dr, 

] dr, 

(48 c) 

m e-T7 a sin [q(Rr)4] + exp ( - bqR4) {b cos (7 - aqR4) + asin (7 - aqR4)) 
f4(%7)  = :so 7 [ a2 + b2 

(484  
f 5 ( % 7 )  = -; som e-T7 [" sin [q(Rr)4] + exp ( - bqR4) {u cos (7 - aqR4) - b sin (7 - aqR4)) 

a2 + b2 

(48 e) 
f 6 ( % 7 )  = ; som e-T7 [a  sin [q(Rr)4] + exp ( - bqR4) {b cos (7 - aqR4) + a sin (7 - aqR4)) 

a2 + b2 
(48f 1 
(48d a(r) = {&[r + (r2 + 1)4])4, b(r) = 1/2a = (2" + (r2 + 1)4]}-4. 
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The above outer solution satisfies the governing equations (14) and boundary 
conditions (15b)  and (45) to leading order in the Reynolds number as R - t c ~ .  
Finally we present the solutions valid for small and large times. 

Small time solution. For 7 + 0 the leading terms are 

u(f,  q , ~ )  - erfc {R*y/27*} + e[2 sin t{erfc (Rtq/27*) - e-q} 

+ &q cos flerfc {R*q/279}] + o(e2), (49a) 

v( ( ,q ,7)  N ~ [ C O S  f{erfc (R4y/273 - Ze-v}] + o(e2). (49b) 
Large time solution. For large times the leading terms are 

u( f l , y ,~ )  N erfc {R*q/2~*} + e[ - e-7 sin (f -7) 
+ exp { - ($R)* q} sin{fl -7 + (@)*q}] + O(e2) ,  (50a) 

(50b)  v(t, y , ~ )  - e[ - e y  cos ((-7)] + O(e2) .  

It is evident that these solutions satisfy the boundary conditions and the 
equations to leading order in all parameters. 

5. Discussion 
In  the previous three sections we have shown how one can obtain approximate 

solutions for the flow generated by the impulsive motion of an infinite wavy wall 
in a viscous fluid. The perturbation treatment, valid for waviness of small 
amplitude, was possible because the Rayleigh solution for the motion of a flat 
plate (i.e. one with no waviness) is known in closed form. By perturbing about 
this limiting solution one can obtain the solution for a wavy wall. The problem 
is still complicated however, because the Rayleigh solution is a function of space 
and time; this leads to partial differential equations with non-constant coefficients 
for the wavy-wall flow field. What we have shown here is that in the limiting 
cases R -+ 0 and R -+ co the perturbation field can be treated by further asymp- 
totic expansions of the wavy-wall field for small and large Reynolds numbers 
respectively. The two limiting cases show significantly different behaviour. 

The flow field for R+O is displayed in (28)-(32). In  this limit the flow field 
is dominated by viscous effects. The wall drags the fluid and very quickly the 
waviness of the wall is essentially submerged in a layer of fluid moving parallel 
to the mean wall profile. For small times [see (31)] the velocity field far from the 
wall does have the classic potential behaviour, i.e. 

u(l' - - e sin ( f l  -7) exp ( - q), dl) N - E cos ( E  -7) exp ( - 7). 

However, as a result of the high viscosity, the viscous Rayleigh layer quickly 
erodes the potential field and the solution for large times emerges. For large 
times [see (32)] the zeroth-order field dominates the flow as the perturbations 
due to the wall waviness decay as 7-9. 

At high Reynolds numbers, on the other hand, the picture is quite different. 
This limit is described by (47)-(50). The Rayleigh solution is of order one only 
in a layer very close to the wall; outside this layer the effects of viscosity decay 
exponentially. As the large time solutions [equations (SO)] clearly indicate, the 
field away from the wall decays rapidly to the classical inviscid field. 
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The high Reynolds number solution has a number of interesting features. It 
is to be noted that the solution was derived in a somewhat unusual fashion. 
Normally, in standard boundary-layer problems one starts with the inviscid 
outer solution and then calculates the boundary layer. In  the present calculations 
the inviscid part of the solution emerges naturally from the complete solution; 
in fact, this result boosts ones confidence in the present calculational pro- 
cedure. The boundary-layer part of the perturbation solution [equation (44)] 
is remarkably simple and acts as a source as far as the outer solution is concerned. 
Actually the Rayleigh part of the complete solution contributes to the full 
boundary layer. Thus we have in effect computed the boundary layer in two 
stages, one to order one and one to order 6 .  As for the inviscid field that emerges, 
this is not (unlike the R+O limit) attenuated by time directly; i t  is merely 
eroded by the slowly growing viscous boundary layer. 

As we have pointed out earlier the whole calculation shows how carefully 
terms of exponential order have to be handled. Such terms on differentiation 
contribute to diEerent orders of a formal perturbation expansion. The method 
used here was to retain all leading terms in the equations and actually calculate 
the leading terms of the solutions. If this simple procedure is not used one is 
forced to use the more formal method of matched asymptotic expansions; this 
will in general necessitate obtaining different expansions valid in different regions 
of 6, 7 , ~  space and matching them. We prefer the present simple approach at 
least for obtaining the leading terms. 

We conclude with a few remarks, admittedly speculative, on the relevance of 
the present results to the problem of the generation of turbulence. If one examines 
the large time solution for R+m, one notices that in a frame moving with the 
wavy wall there is no real unsteadiness in the solution except for the growth of 
the boundary layer. The present results therefore do not show any turbulence- 
like structure. This is not surprising as in two dimensions the vortex lines are 
straight and cannot be stretched or twisted. This conclusion appears to be 
supported by the mathematical work of Ladyzhenskaya (1959, 1969). Strictly 
speaking Ladyzhenskaya’s results apply to two-dimensional fields in which the 
velocity is essentially square integrable over the whole field; this condition is not 
satisfied by the velocity field considered here. Intuitively it seems plausible that 
the violation of this single condition owing to the infinite extent in the x direction 
is unlikely to invalidate Ladyzhenskaya’s result that turbulence is not possible 
in a two-dimensional field. Now the last few comments here are of a purely 
speculative nature based on our limited understanding of a difficult problem; the 
fact is, however, that the present two-dimensional calculation shows no tur- 
bulence-like structure. Whether in three dimensions a prototype problem similar 
to the present one will show the generation of turbulence is an open question. 

We wish to thank Dr Priti Shankar for her painstaking assistance in preparing 
the manuscript of this paper. 
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